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Outline of Fan, Demirkaya, Li and L. (2020)

1) Graphical nonlinear knockoffs (Fan, Demirkaya, Li and L., 2020)
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Applications

A primary goal in modern data analysis is to identify the important
predictors in a sea of noise variables, e.g.,

In economics, researchers are interested in which
demographic/socioeconomic variables affect future income

In the technology industry, people seek out specific software
characteristics they can change to increase user engagement

In political science, people want to study which demographic or
socioeconomic variables determine political opinions
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Problem setup

Given response Y and p covariates X1, · · · ,Xp, we aim to
identify relevant covariates S0

S0: the smallest set such that Y is independent of XSc
0

given XS0

Related to the concept of Markov blanket (Pearl, 1988, Section 3.2.1)

Formulated as multiple hypothesis testing:

H0j : Xj ∈ Sc
0 , j = 1, · · · ,p

More explicitly, aim to control FDR

FDR = E[FDP], FDP =
|Ŝ ∩ Sc

0 |
|Ŝ|
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Existing work

Most existing work relies on p-value (e.g., Benjamini and Hochberg, 1995;

Benjamini, 2010; Benjamini and Yekutieli, 2001; ...)

BH procedure: sort p-values in ascending order and then choose
a cutoff such that hypotheses with p-values below the cutoff are
rejected

very popularly used

theoretically guaranteed to control FDR under p-value
independence and certain forms of dependence
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Potential problem with p-value

A fundamental assumption for p-value
based procedures: uniform distribution
of p-value under null hypothesis

However, in logistic regression with n = 500
p = 200 and under global null: non-uniform
null distribution (Candès, Fan, Janson and L., 2018)
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Theoretical characterization

Consider GLM model with regression coefficient β0.

Theorem (Fan, Demirkaya and L., 2019)

1 * Under some regularity conditions, if p = o(n1/2), the MLE
β̂ = (β̂1, · · · , β̂p)

T satisfies that

√
n(β̂j − β0,j)→d N(0, σ2

j ) for each j = 1, · · · ,p.

2 Under global null β0 = 0 and correlated Gaussian design
N(0,Σ0), if p = O(nα0) with α0 ∈ [0,2/3), then

√
nβ̂j →d N(0, σ2

j ) for each j = 1, · · · ,p.

3 In logistic regression model, under global null and correlated
Gaussian design, the asymptotic normalities in 2) above fail to
hold when p ∼ n2/3.

*Fan and L. (2011), van de Geer et al. (2014), Javanmard and Montanari (2014), ...
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Caution when using p-values based on MLE

In GLMs, if one wants to use p-values based on MLE for testing
H0,j : β0j = 0

When p = o(n1/2), p-value is asymptotically valid

Under global null of β0 = 0, the exact breakdown point is
p ∼ n2/3

Remark : For GLMs, Sur, Chen and Candès (2017) derived the
asymptotic distribution of LRT when p/n→ γ with γ < 1/2 under
global null β0 = 0
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The knockoff filter

Bypass the use of p-values
Fix-X knockoffs (Barber and Candès, 2015 & 2016)

Originally introduced the knockoff filter

Geometric construction of knockoff variables

Gaussian linear model

Model-X knockoffs (Candès, Fan, Janson and L., 2018): probabilistic
construction of knockoffs

A new read of the original knockoff filter

Model-free: any model for the conditional dependence
Y |X1, · · · ,Xp

Dimension free: any dimension (including p > n)

Known covariate distribution: joint distribution of x = (X1, · · · ,Xp)
is known

Theoretically guaranteed to achieve finite-sample FDR control
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Model-X knockoffs framework (Candès, Fan, Janson and L., 2018)

Intuition:
Generate “fake” copies of original covariates which are irrelevant
to Y but mimic the dependence structure of original covariates

Act as controls for assessing importance of original variables
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Model-X knockoff variables

Definition (Candès, Fan, Janson and L., 2018)

Model-X knockoffs for the family of random variables
x = (X1, · · · ,Xp)

′ are a new family of random variables
x̃ = (X̃1, · · · , X̃p)

′ constructed such that
for any subset S ⊂ {1, · · · ,p},

(x′, x̃′)swap(S)
d
=(x′, x̃′)

x̃ ⊥⊥ Y |x
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The knockoffs procedure

(1) Construct model-X knockoff variables using the joint distribution
of x

(2) Compute knockoff statistics Wj ’s
Positive Wj : original more important, strength measured by
magnitude
Null variables: Wj should be symmetric around 0

(3) Find the knockoff threshold:
Order the variables by decreasing |Wj | and proceed down list
Select only variables with positive Wj exceeding some threshold τ̂

Coin flipping property: The key is that steps (1) and (2) are done
specifically to ensure that conditional on |W1|, · · · , |Wp|, the signs of
the unimportant/null Wj are independently ±1 with probability 1/2

Jinchi Lv, USC Marshall – 12/38



Choice of threshold

Intuition of FDR control

FDR = E
[
#selected null variables
#selected variables

]
= E

[
#{null Wj ≥ τ̂}
#{Wj ≥ τ̂}

]
≈ E

[
#{null −Wj ≥ τ̂}

#{Wj ≥ τ̂}

]
≤ E

[
#{−Wj ≥ τ̂}
#{Wj ≥ τ̂}

]
.

This suggests to choose the threshold τ̂ by examining the ratio

#{−Wj ≥ τ̂}
#{Wj ≥ τ̂}
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Example

10 variables, target FDR q = 0.2
Find the Knockoff Threshold

Example with p = 10 and q = 20% = 1/5:
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Summary

Review:
Arbitrary dependence structure of y on x
Arbitrary dimensionality
Exact finite sample FDR control (has been proved)
Need to know the joint distribution of x in order to construct valid
knockoff variables
Can be regarded as a wrapper

What are missing?
Power justification∗

Implementable knockoff variable construction
Robustness analysis to unknown covariate distribution

∗Weinstein, Barber and Candès (2017): Gaussian linear model with i.i.d. Gaussian design
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Overview

Outline
Asymptotic power analysis for model-X knockoffs

RANK: a graphical nonlinear knockoff filter

Robustness analysis of RANK to estimation error
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Gaussian graphic model

If x ∼ N(0,Σ0), then x̃ can be generated according to(
x
x̃

)
∼ N

((
0
0

)
,

(
Σ0 Σ0 − diag{s}

Σ0 − diag{s} Σ0

))
,

or equivalently,

x̃|x ∼ N
(

x− diag{s}Σ−1
0 x,2diag{s} − diag{s}Σ−1

0 diag{s}
)
, (1)

where diag{s} is a diagonal matrix controlling the power;
nuisance parameters.

Assume implicitly that 2diag{s} − diag{s}Σ−1
0 diag{s} has

smallest eigenvalue bounded below from 0.

Sesia, Sabatti and Candès (2017) extended model-X knockoffs to the setting when covariate

distribution is HMM
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Asymptotic power analysis – I

Power depends on signal strength

Focusing on linear model for easy characterization of signal
strength

y = Xβ0 + ε,

y ∈ Rn, X ∈ Rn×p, and ε ∈ Rn with i.i.d. rows.
s := |supp(β0)| = o(n)

Construction of knockoff statistics
Regress y on augmented design matrix [X, X̃] ∈ Rn×2p using Lasso

β̂ = (β̂1, · · · , β̂2p)
T = argminb∈R2p

{
(2n)−1∥∥y− [X, X̃]b

∥∥2
2 + λ‖b‖1

}
.

LCD: Wj = |β̂j | − |β̂p+j |, j = 1, · · · , p

The coin flipping property is satisfied
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Asymptotic power analysis – II

Let Ŝ be the set of variables selected by knockoff filter. Then

Power(Ŝ) = E
[ |Ŝ ∩ supp(β0)|
|supp(β0)|

]
Technical conditions:

Condition 1. ε has i.i.d. sub-Gaussian components

Condition 2. {n/(log p)}1/2 min
j∈S0

|β0,j | → ∞ as n increases

Condition 3. With asymptotic probability one, |Ŝ| ≥ cs with some
constant c ∈ (2(qs)−1,1)

Remark : Condition 2 is to ensure Lasso has asymptotic power 1
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Asymptotic power analysis – III

Lemma (Fan, Demirkaya, Li and L., 2020)

Assume that Condition 1 holds and there exists some constant
c ∈ (2(qs)−1,1) such that |{j : |β0,j | � [sn−1(log p)]1/2}| ≥ cs. Then
Condition 3 holds.

Theorem (Fan, Demirkaya, Li and L., 2020)

Under Conditions 1–3 and some other regularity conditions, if
log p = o(n), with asymptotic probability one, we have Power(Ŝ)→ 1
as n→∞
Remark: The results can be easily generalized to non-Gaussian
design case
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Graphical Nonlinear Knockoffs

From now on, focus on x ∼ N(0,Σ0) with unknown Σ0.
Still allows for arbitrary dependence of y on x

Still allows for high dimensionality of p � n

Challenges:
X Estimation of Ω0 = Σ−1

0 when p � n

? Knockoff variables are only approximate (no coin flipping property)

? Is FDR still under control with approximate knockoff variables?

? How does it affect power?
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Estimation of precision matrix Ω0

Large literature on this; Glasso (Friedman et. al, 2008), CLIME (Cai et. al,

2011), ISEE (Fan and L., 2016), ...

In our numerical analysis, we use ISEE (Fan and L., 2016)
Main idea: convert the problem of precision matrix estimation into
that of covariance matrix estimation by the innovated
transformation

For our theory, consider the following class of estimators
Condition 4. Assume that Ω̂ satisfies ‖Ω̂−Ω0‖2 ≤ C2an with
probability 1−O(p−c1) for some C2, c1 > 0 and an → 0.
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The RANK procedure for graphical nonlinear knockoffs

(X,	y)n

p+1

(X(1),y(1))n/2
p+1

(X(2),y(2))n/2
p

Use	X(#) to	construct		Ω';
Use	X(#), 𝑦(#) to	reduce	
the	model	size	to	𝑆+

𝑋-.' n/2
p+1

Construct	Wj	using	(𝑋/+
0 , 𝑋-/+

.' , 𝑦(0));	
Set	Wj=0	for	𝑗 ∉ 𝑆+	
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Why data splitting?

Conjecture: only a technical assumption

Main challenges in proofs:
Coin flipping property is violated; original proof does not apply

X̃
Ω1 ∈ Rn×p and X̃

Ω2 ∈ Rn×p are not close in distribution even if Ω1

and Ω2 are close

Solution:
Reduce the dimensionality to S̃ using half of the data

Use X̃
Ω0
S̃ as a bridge and show

FDR(Ω; S̃) ≈ FDR(Ω0; S̃) for Ω ≈ Ω0

Prove FDR(Ω0; S̃) ≤ q with q some target FDR level
(Independence of S̃ and X(2) is crucial for ensuring coin flipping
property in this step!)
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Connection with Barber and Candès (2016)

Data splitting was used in Barber and Candès (2016) for fixed-X
knockoffs in Gaussian linear model when p > n

Main differences:
BC16

Gaussian linear model

Need sure screening property for
dimension reduction step for FDR
control

RANK
Arbitrary dependence structure of
y on x

No screening property needed
for FDR control

Might be just a technical
assumption
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Robustness of FDR

Technical conditions: ‖Ω̂−Ω0‖2 ≤ C2an with probability 1−O(p−c1);
the reduced model size |S̃| ≤ Kn.

Theorem (Fan, Demirkaya, Li and L., 2020)

Under some regularity conditions, it holds that

sup
|S|≤Kn, ‖Ω−Ω0‖2≤C2an

|FDRn(Ω,S)− FDR(Ω0,S)| ≤ O(K 1/2
n an).

Moreover, if K 1/2
n an → 0,

FDRn(Ω̂, S̃) ≤ q + O(K 1/2
n an) + O(p−c1),

with q ∈ (0,1) target FDR level.
Remark : FDR control is with respect to the original model instead of
the reduced model.
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Robustness of Power

Back to linear model y = Xβ0 + ε for easy characterization of
signal strength

Lasso is used as the underlying variable selection method

Focus on relative power loss because
Power of knockoffs ≤ Power of Lasso

WLOG, assume the sure screening property
P(S̃ ⊃ supp(β0))→ 1 as n→∞ to simplify technical proof

Remark: without sure screening property, similar conclusion is
still true because the model can be regarded as projection

Jinchi Lv, USC Marshall – 27/38



Robustness of Power – Continued

Some additional conditions
Condition 5: Ω0 is Lp-sparse; all the eigenvalues of Ω0 are
bounded away from 0 and∞
Condition 6: With probability 1−O(p−c2), Ω̂ is L′p-sparse and
‖Ω̂−Ω0‖2 ≤ C2an

Condition 7 : |{j : |β0,j | � [sn−1(log p)]1/2}| ≥ cs

Theorem (Fan, Demirkaya, Li and L., 2020)

Under Conditions 1–2 and 5–7 and some growth conditions on
(an,Kn,Lp,L′p), if log p = o(na), then it holds that RANK with estimated
precision matrix Ω̂ and reduced model S̃ has asymptotic power one.
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Model settings

Focus on Gaussian design x ∼ N(0,Σ0) for easy generation of
knockoff variables

Linear model: y = Xβ0 + ε

Partially linear model: y = Xβ0 + g(U) + ε

Single-index model: y = g(Xβ0) + ε

Additive model: y =
∑p

j=1 gj(Xj) + ε

n = 400 in all settings
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How to choose diag{s} in generating knockoff variables?

Barber and Candès (2015) suggested
equicorrelated construction sEQ

j = 2λmin(Σ) ∧ 1 for all j
semidefinite program (SDP) construction

minimize
∑

j

|1−sSDP
j | subject to sSDP

j ≥ 0, diag{sSDP} � 2Σ

We (Candès, Fan, Janson and L., 2018) suggested scalable construction –
approximate semidefinite program (ASDP) construction:

Step 1. Choose an approximation Σapprox of Σ and solve:

minimize
∑

j |1− ŝj |
subject to ŝj ≥ 0, diag{ŝ} � 2Σapprox.

Step 2. maximize γ subject to diag{γŝ} � 2Σ,
and set sASDP = γŝ. Can be solved quickly by
bisection search over γ ∈ [0,1].

Note: Each column of X is standardized to have norm 1
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Simulation Results – linear model

Table 1: Linear model with A = 1.5 and s = 30; “+” stands for knockoff+ filter;
“s” stands for with data splitting

RANK RANK+ RANKs RANKs+

ρ p FDR Power FDR Power FDR Power FDR Power
0 200 0.2054 1.00 0.1749 1.00 0.1909 1.00 0.1730 1.00

400 0.2062 1.00 0.1824 1.00 0.2010 1.00 0.1801 1.00
600 0.2263 1.00 0.1940 1.00 0.2206 1.00 0.1935 1.00
800 0.2385 1.00 0.1911 1.00 0.2247 1.00 0.1874 1.00

1000 0.2413 1.00 0.2083 1.00 0.2235 1.00 0.1970 1.00
0.5 200 0.2087 1.00 0.1844 1.00 0.1875 1.00 0.1692 1.00

400 0.2144 1.00 0.1879 1.00 0.1954 1.00 0.1703 1.00
600 0.2292 1.00 0.1868 1.00 0.2062 1.00 0.1798 1.00
800 0.2398 1.00 0.1933 1.00 0.2052 0.9997 0.1805 0.9997

1000 0.2412 1.00 0.2019 1.00 0.2221 0.9984 0.2034 0.9984
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Continued

Table 2: Linear model with A = 3.5 and s = 30; “+” stands for knockoff+ filter;
“s” stands for with data splitting; “HKF” stands for Barber and Candès (2016)
approach

RANKs RANKs+ HKF HKF+

ρ p FDR Power FDR Power FDR Power FDR Power
0 200 0.1858 1.00 0.1785 1.00 0.1977 0.9849 0.1749 0.9837

400 0.1895 1.00 0.1815 1.00 0.2064 0.9046 0.1876 0.8477
600 0.2050 1.00 0.1702 1.00 0.1964 0.8424 0.1593 0.7668
800 0.2149 1.00 0.1921 1.00 0.1703 0.7513 0.1218 0.6241

1000 0.2180 1.00 0.1934 1.00 0.1422 0.7138 0.1010 0.5550
0.5 200 0.1986 1.00 0.1618 1.00 0.1992 0.9336 0.1801 0.9300

400 0.1971 1.00 0.1805 1.00 0.1657 0.8398 0.1363 0.7825
600 0.2021 1.00 0.1757 1.00 0.1253 0.7098 0.0910 0.6068
800 0.2018 1.00 0.1860 1.00 0.1374 0.6978 0.0917 0.5792

1000 0.2097 0.9993 0.1920 0.9993 0.1552 0.6486 0.1076 0.5524
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Simulation results – partially linear model

Table 3: Partially linear model with s = 30; “+” stands for knockoff+ filter; “s”
stands for with data splitting

RANK RANK+ RANKs RANKs+

ρ p FDR Power FDR Power FDR Power FDR Power
0 200 0.2117 1.00 0.1923 1.00 0.1846 0.9976 0.1699 0.9970

400 0.2234 1.00 0.1977 1.00 0.1944 0.9970 0.1747 0.9966
600 0.2041 1.00 0.1776 1.00 0.2014 0.9968 0.1802 0.9960
800 0.2298 1.00 0.1810 1.00 0.2085 0.9933 0.1902 0.9930

1000 0.2322 1.00 0.1979 1.00 0.2113 0.9860 0.1851 0.9840
0.5 200 0.2180 1.00 0.1929 1.00 0.1825 0.9952 0.1660 0.9949

400 0.2254 1.00 0.1966 1.00 0.1809 0.9950 0.1628 0.9948
600 0.2062 1.00 0.1814 1.00 0.2038 0.9945 0.1898 0.9945
800 0.2264 1.00 0.1948 1.00 0.2019 0.9916 0.1703 0.9906

1000 0.2316 1.00 0.2033 1.00 0.2127 0.9830 0.1857 0.9790
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Simulation results – single-index model

Table 4: Single-index model with s = 10; “+” stands for knockoff+ filter; “s”
stands for with data splitting

RANK RANK+ RANKs RANKs+

ρ p FDR Power FDR Power FDR Power FDR Power
0 200 0.1893 1 0.1413 1 0.1899 1 0.1383 1

400 0.2163 1 0.1598 1 0.245 0.998 0.1676 0.997
600 0.2166 1 0.1358 1 0.2314 0.999 0.1673 0.998
800 0.1964 1 0.1406 1 0.2443 0.992 0.1817 0.992

1000 0.2051 1 0.134 1 0.2431 0.969 0.1611 0.962
0.5 200 0.2189 1 0.1591 1 0.2322 1 0.1626 1

400 0.2005 1 0.1314 1 0.2099 0.996 0.1615 0.995
600 0.2064 1 0.1426 1 0.2331 0.998 0.1726 0.998
800 0.2049 1 0.1518 1 0.2288 0.994 0.1701 0.994

1000 0.2259 1 0.1423 1 0.2392 0.985 0.185 0.983
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Simulation results – additive model

Table 5: Additive model with s = 10; “+” stands for knockoff+ filter; “s” stands
for with data splitting

RANK RANK+ RANKs RANKs+

ρ p FDR Power FDR Power FDR Power FDR Power
0 200 0.1926 0.9780 0.1719 0.9690 0.2207 0.9490 0.1668 0.9410

400 0.2094 0.9750 0.1773 0.9670 0.2236 0.9430 0.1639 0.9340
600 0.2155 0.9670 0.1729 0.9500 0.2051 0.9310 0.1620 0.9220
800 0.2273 0.9590 0.1825 0.9410 0.2341 0.9280 0.1905 0.9200

1000 0.2390 0.9570 0.1751 0.9350 0.2350 0.9140 0.1833 0.9070
0.5 200 0.1904 0.9680 0.1733 0.9590 0.2078 0.9370 0.1531 0.9330

400 0.2173 0.9650 0.1701 0.9540 0.2224 0.9360 0.1591 0.9280
600 0.2267 0.9600 0.1656 0.9360 0.2366 0.9340 0.1981 0.9270
800 0.2306 0.9540 0.1798 0.9320 0.2332 0.9150 0.1740 0.9110

1000 0.2378 0.9330 0.1793 0.9270 0.2422 0.8970 0.1813 0.8880
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Simulation Results

RANK and RANK+ mimic closely RANKs and RANKs+,
suggesting that data splitting is more of a technical assumption

FDR approximately controlled at target level of q = 0.2 with high
power, which is in line with our theory

Despite that both RANKs and HKF (for linear model) are based
on data splitting, their practical performance is very different

These results demonstrate model-free feature of our procedure
for large-scale inference in nonlinear models
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Conclusions

Model-X knockoffs is a powerful, flexible, and robust solution for
FDR control in high-dimensional variable selection

Can be regarded as a “wrapper” that may be combined with any
variable selection methods

Extensions
Investigate how to generate model-X knockoff variables in more
general settings (IPAD Fan, L., Sharifvaghefi and Uematsu, 2020; ...)

Integrate the idea of knockoffs inference with deep learning
(DeepPINK Lu, Fan, L. and Noble, 2018; ...)
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