# High-Dimensional Knockoffs Inference (part I)

Jinchi Lv Data Sciences and Operations Department Marshall School of Business University of Southern California

#### http://faculty.marshall.usc.edu/jinchi-lv

USC Summer School on Uncertainty Quantification (08/09/2024)

Jinchi Lv, USC Marshall - 1/38

# Outline of Fan, Demirkaya, Li and L. (2020)

#### 1) Graphical nonlinear knockoffs (Fan, Demirkaya, Li and L., 2020)

A primary goal in modern data analysis is to identify the important predictors in a sea of noise variables, e.g.,

- In economics, researchers are interested in which demographic/socioeconomic variables affect future income
- In the technology industry, people seek out specific software characteristics they can change to increase user engagement
- In political science, people want to study which demographic or socioeconomic variables determine political opinions

### Problem setup

- Given response Y and p covariates X<sub>1</sub>, · · · , X<sub>p</sub>, we aim to identify relevant covariates S<sub>0</sub>
- $S_0$ : the smallest set such that Y is independent of  $X_{S_0^c}$  given  $X_{S_0}$ 
  - Related to the concept of Markov blanket (Pearl, 1988, Section 3.2.1)
- Formulated as multiple hypothesis testing:

$$H_{0j}: X_j \in \mathcal{S}_0^c, \qquad j = 1, \cdots, p$$

More explicitly, aim to control FDR

$$ext{FDR} = \mathbb{E}[ ext{FDP}], \qquad ext{FDP} = rac{|\widehat{S} \cap \mathcal{S}_0^c|}{|\widehat{S}|}$$

Most existing work relies on p-value (e.g., Benjamini and Hochberg, 1995; Benjamini, 2010; Benjamini and Yekutieli, 2001; ...)

- BH procedure: sort p-values in ascending order and then choose a cutoff such that hypotheses with p-values below the cutoff are rejected
- very popularly used
- theoretically guaranteed to control FDR under p-value independence and certain forms of dependence

# Potential problem with p-value

A fundamental assumption for p-value based procedures: uniform distribution of p-value under null hypothesis

However, in logistic regression with n = 500 p = 200 and under global null: non-uniform null distribution (Candès, Fan, Janson and L., 2018)





## Theoretical characterization

Consider GLM model with regression coefficient  $\beta_0$ .

Theorem (Fan, Demirkaya and L., 2019)

■ \* Under some regularity conditions, if  $p = o(n^{1/2})$ , the MLE  $\hat{\beta} = (\hat{\beta}_1, \dots, \hat{\beta}_p)^T$  satisfies that

$$\sqrt{n}(\widehat{\beta}_j - \beta_{0,j}) \rightarrow_d N(0, \sigma_j^2)$$
 for each  $j = 1, \cdots, p$ .

2 Under global null  $\beta_0 = \mathbf{0}$  and correlated Gaussian design  $N(\mathbf{0}, \mathbf{\Sigma}_0)$ , if  $p = O(n^{\alpha_0})$  with  $\alpha_0 \in [0, 2/3)$ , then

$$\sqrt{n}\widehat{\beta}_j \rightarrow_d N(0, \sigma_j^2)$$
 for each  $j = 1, \cdots, p$ .

In logistic regression model, under global null and correlated Gaussian design, the asymptotic normalities in 2) above fail to hold when p ~ n<sup>2/3</sup>.

\*Fan and L. (2011), van de Geer et al. (2014), Javanmard and Montanari (2014), ...

# Caution when using p-values based on MLE

In GLMs, if one wants to use p-values based on MLE for testing  $H_{0,j}$ :  $\beta_{0j} = 0$ 

• When  $p = o(n^{1/2})$ , p-value is asymptotically valid

• Under global null of  $\beta_0 = \mathbf{0}$ , the exact breakdown point is  $p \sim n^{2/3}$ 

*Remark*: For GLMs, Sur, Chen and Candès (2017) derived the asymptotic distribution of LRT when  $p/n \rightarrow \gamma$  with  $\gamma < 1/2$  under global null  $\beta_0 = 0$ 

# The knockoff filter

#### Bypass the use of p-values

- Fix-X knockoffs (Barber and Candès, 2015 & 2016)
  - Originally introduced the knockoff filter
  - Geometric construction of knockoff variables
  - Gaussian linear model
- Model-X knockoffs (Candès, Fan, Janson and L., 2018): probabilistic construction of knockoffs
  - A new read of the original knockoff filter
  - Model-free: any model for the conditional dependence  $Y|X_1, \cdots, X_p$
  - Dimension free: any dimension (including p > n)
  - Known covariate distribution: joint distribution of  $\mathbf{x} = (X_1, \cdots, X_p)$  is known
- Theoretically guaranteed to achieve finite-sample FDR control

Intuition:

- Generate "fake" copies of original covariates which are irrelevant to Y but mimic the dependence structure of original covariates
- Act as controls for assessing importance of original variables

# Model-X knockoff variables

#### Definition (Candès, Fan, Janson and L., 2018)

Model-X knockoffs for the family of random variables  $\mathbf{x} = (X_1, \cdots, X_p)'$  are a new family of random variables  $\widetilde{\mathbf{x}} = (\widetilde{X}_1, \cdots, \widetilde{X}_p)'$  constructed such that

• for any subset  $S \subset \{1, \cdots, p\}$ ,

$$(\mathbf{x}', \widetilde{\mathbf{x}}')_{swap(S)} \stackrel{d}{=} (\mathbf{x}', \widetilde{\mathbf{x}}')$$

#### ■ **x** ⊥⊥ *Y*|**x**

# The knockoffs procedure

- Construct model-X knockoff variables using the joint distribution of x
- (2) Compute knockoff statistics  $W_i$ 's
  - Positive W<sub>j</sub>: original more important, strength measured by magnitude
  - Null variables: W<sub>i</sub> should be symmetric around 0
- (3) Find the knockoff threshold:
  - Order the variables by decreasing  $|W_i|$  and proceed down list
  - Select only variables with positive  $W_j$  exceeding some threshold  $\hat{\tau}$

Coin flipping property: The key is that steps (1) and (2) are done specifically to ensure that conditional on  $|W_1|, \dots, |W_p|$ , the signs of the unimportant/null  $W_i$  are independently  $\pm 1$  with probability 1/2

Choice of threshold

Intuition of FDR control

$$\begin{aligned} \mathsf{FDR} &= E\left[\frac{\# \mathsf{selected null variables}}{\# \mathsf{selected variables}}\right] \\ &= E\left[\frac{\#\{\mathsf{null } W_j \geq \hat{\tau}\}}{\#\{W_j \geq \hat{\tau}\}}\right] \\ &\approx E\left[\frac{\#\{\mathsf{null } - W_j \geq \hat{\tau}\}}{\#\{W_j \geq \hat{\tau}\}}\right] \\ &\leq E\left[\frac{\#\{-W_j \geq \hat{\tau}\}}{\#\{W_j \geq \hat{\tau}\}}\right]. \end{aligned}$$

This suggests to choose the threshold  $\hat{\tau}$  by examining the ratio

$$\frac{\#\{-W_j \ge \hat{\tau}\}}{\#\{W_j \ge \hat{\tau}\}}$$









Jinchi Lv. USC Marshall – 14/38



10 variables, target FDR q = 0.2



10 variables, target FDR q = 0.2



# Summary

#### Review:

- Arbitrary dependence structure of y on x
- Arbitrary dimensionality
- Exact finite sample FDR control (has been proved)
- Need to know the joint distribution of x in order to construct valid knockoff variables
- Can be regarded as a wrapper
- What are missing?
  - Power justification\*
  - Implementable knockoff variable construction
  - Robustness analysis to unknown covariate distribution

\*Weinstein, Barber and Candès (2017): Gaussian linear model with i.i.d. Gaussian design Jinchi Ly. USC Marshall – 15/38 Outline

- Asymptotic power analysis for model-X knockoffs
- RANK: a graphical nonlinear knockoff filter
- Robustness analysis of RANK to estimation error

# Gaussian graphic model

If  $\mathbf{x} \sim N(\mathbf{0}, \boldsymbol{\Sigma}_0)$ , then  $\widetilde{\mathbf{x}}$  can be generated according to

$$\left(\begin{array}{c} \boldsymbol{X} \\ \widetilde{\boldsymbol{X}} \end{array}\right) \sim N\left(\left(\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{0} \end{array}\right), \left(\begin{array}{cc} \boldsymbol{\Sigma}_0 & \boldsymbol{\Sigma}_0 - \text{diag}\{\boldsymbol{s}\} \\ \boldsymbol{\Sigma}_0 - \text{diag}\{\boldsymbol{s}\} & \boldsymbol{\Sigma}_0 \end{array}\right)\right),$$

or equivalently,

$$\widetilde{\boldsymbol{x}}|\boldsymbol{x} \sim N\Big(\boldsymbol{x} - \text{diag}\{\boldsymbol{s}\}\boldsymbol{\Sigma}_0^{-1}\boldsymbol{x}, 2\text{diag}\{\boldsymbol{s}\} - \text{diag}\{\boldsymbol{s}\}\boldsymbol{\Sigma}_0^{-1}\text{diag}\{\boldsymbol{s}\}\Big), \ (1)$$

where  $\mathrm{diag}\{\boldsymbol{s}\}$  is a diagonal matrix controlling the power; nuisance parameters.

Assume implicitly that  $2\text{diag}\{s\} - \text{diag}\{s\}\Sigma_0^{-1}\text{diag}\{s\}$  has smallest eigenvalue bounded below from 0.

Sesia, Sabatti and Candès (2017) extended model-X knockoffs to the setting when covariate distribution is HMM

# Asymptotic power analysis – I

- Power depends on signal strength
- Focusing on linear model for easy characterization of signal strength

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta}_0 + \boldsymbol{\varepsilon},$$

• 
$$\mathbf{y} \in \mathbb{R}^n$$
,  $\mathbf{X} \in \mathbb{R}^{n \times p}$ , and  $\boldsymbol{\varepsilon} \in \mathbb{R}^n$  with i.i.d. rows.

• 
$$s := |\operatorname{supp}(\beta_0)| = o(n)$$

Construction of knockoff statistics

Regress **y** on augmented design matrix  $[\mathbf{X}, \widetilde{\mathbf{X}}] \in \mathbb{R}^{n \times 2p}$  using Lasso

$$\widehat{\boldsymbol{\beta}} = \left(\widehat{\beta}_1, \cdots, \widehat{\beta}_{2\rho}\right)^T = \arg\min_{\boldsymbol{b} \in \mathbb{R}^{2\rho}} \left\{ (2n)^{-1} \| \boldsymbol{y} - [\boldsymbol{X}, \widetilde{\boldsymbol{X}}] \boldsymbol{b} \|_2^2 + \lambda \| \boldsymbol{b} \|_1 \right\}.$$

• LCD: 
$$W_j = |\widehat{\beta}_j| - |\widehat{\beta}_{p+j}|, j = 1, \cdots, p$$

The coin flipping property is satisfied

# Asymptotic power analysis – II

Let  $\widehat{\mathcal{S}}$  be the set of variables selected by knockoff filter. Then

$$Power(\widehat{S}) = \mathbb{E}\Big[\frac{|\widehat{S} \cap supp(\beta_0)|}{|supp(\beta_0)|}\Big]$$

Technical conditions:

- Condition 1. ε has i.i.d. sub-Gaussian components
- Condition 2.  $\{n/(\log p)\}^{1/2} \min_{j \in S_0} |\beta_{0,j}| \to \infty$  as *n* increases
- *Condition 3.* With asymptotic probability one,  $|\widehat{S}| \ge cs$  with some constant  $c \in (2(qs)^{-1}, 1)$

Remark: Condition 2 is to ensure Lasso has asymptotic power 1

#### Lemma (Fan, Demirkaya, Li and L., 2020)

Assume that Condition 1 holds and there exists some constant  $c \in (2(qs)^{-1}, 1)$  such that  $|\{j : |\beta_{0,j}| \gg [sn^{-1}(\log p)]^{1/2}\}| \ge cs$ . Then Condition 3 holds.

#### Theorem (Fan, Demirkaya, Li and L., 2020)

Under Conditions 1–3 and some other regularity conditions, if  $\log p = o(n)$ , with asymptotic probability one, we have  $\operatorname{Power}(\widehat{S}) \to 1$  as  $n \to \infty$ 

*Remark*: The results can be easily generalized to non-Gaussian design case

# Graphical Nonlinear Knockoffs

From now on, focus on  $\mathbf{x} \sim N(\mathbf{0}, \boldsymbol{\Sigma}_0)$  with unknown  $\boldsymbol{\Sigma}_0$ .

Still allows for arbitrary dependence of y on x

Still allows for high dimensionality of  $p \gg n$ 

- Challenges:
  - ✓ Estimation of  $\Omega_0 = \Sigma_0^{-1}$  when  $p \gg n$ 
    - ? Knockoff variables are only approximate (no coin flipping property)
    - ? Is FDR still under control with approximate knockoff variables?
    - ? How does it affect power?

# Estimation of precision matrix $\Omega_0$

- Large literature on this; Glasso (Friedman et. al, 2008), CLIME (Cai et. al, 2011), ISEE (Fan and L., 2016), ...
- In our numerical analysis, we use ISEE (Fan and L., 2016)
  - Main idea: convert the problem of precision matrix estimation into that of covariance matrix estimation by the *innovated* transformation
- For our theory, consider the following class of estimators
  - Condition 4. Assume that  $\widehat{\Omega}$  satisfies  $\|\widehat{\Omega} \Omega_0\|_2 \le C_2 a_n$  with probability  $1 O(p^{-c_1})$  for some  $C_2, c_1 > 0$  and  $a_n \to 0$ .

# The RANK procedure for graphical nonlinear knockoffs



# Why data splitting?

- Conjecture: only a technical assumption
- Main challenges in proofs:
  - Coin flipping property is violated; original proof does not apply
  - $\widetilde{\mathbf{X}}^{\Omega_1} \in \mathbb{R}^{n \times p}$  and  $\widetilde{\mathbf{X}}^{\Omega_2} \in \mathbb{R}^{n \times p}$  are not close *in distribution* even if  $\Omega_1$  and  $\Omega_2$  are close
- Solution:
  - Reduce the dimensionality to  $\widetilde{\mathcal{S}}$  using half of the data
  - Use  $\widetilde{\mathbf{X}}_{\widetilde{S}}^{\Omega_0}$  as a bridge and show

$$\mathsf{FDR}(\Omega;\widetilde{\mathcal{S}})\approx\mathsf{FDR}(\Omega_0;\widetilde{\mathcal{S}})\text{ for }\Omega\approx\Omega_0$$

Prove FDR(Ω<sub>0</sub>; S̃) ≤ q with q some target FDR level (Independence of S̃ and X<sup>(2)</sup> is crucial for ensuring coin flipping property in this step!) Connection with Barber and Candès (2016)

Data splitting was used in Barber and Candès (2016) for fixed-X knockoffs in Gaussian linear model when p > n

Main differences:

#### BC16

- Gaussian linear model
- Need sure screening property for dimension reduction step for FDR control

#### RANK

- Arbitrary dependence structure of y on x
- No screening property needed for FDR control
- Might be just a technical assumption

# Robustness of FDR

Technical conditions:  $\|\widehat{\Omega} - \Omega_0\|_2 \leq C_2 a_n$  with probability  $1 - O(p^{-c_1})$ ; the reduced model size  $|\widetilde{S}| \leq K_n$ .

Theorem (Fan, Demirkaya, Li and L., 2020)

Under some regularity conditions, it holds that

 $\sup_{|\mathcal{S}|\leq K_n, \|\mathbf{\Omega}-\mathbf{\Omega}_0\|_2\leq C_2a_n}|\mathrm{FDR}_n(\mathbf{\Omega},\mathcal{S})-\mathrm{FDR}(\mathbf{\Omega}_0,\mathcal{S})|\leq O(K_n^{1/2}a_n).$ 

Moreover, if  $K_n^{1/2}a_n \rightarrow 0$ ,

$$\operatorname{FDR}_n(\widehat{\Omega},\widetilde{\mathcal{S}}) \leq q + O(K_n^{1/2}a_n) + O(p^{-c_1}),$$

with  $q \in (0, 1)$  target FDR level.

*Remark*: FDR control is with respect to the original model instead of the reduced model.

# Robustness of Power

Back to linear model y = Xβ<sub>0</sub> + ε for easy characterization of signal strength

- Lasso is used as the underlying variable selection method
- Focus on relative power loss because
  - Power of knockoffs  $\leq$  Power of Lasso
- WLOG, assume the sure screening property  $P(\widetilde{S} \supset \operatorname{supp}(\beta_0)) \rightarrow 1$  as  $n \rightarrow \infty$  to simplify technical proof
- Remark: without sure screening property, similar conclusion is still true because the model can be regarded as projection

# Robustness of Power – Continued

#### Some additional conditions

- Condition 5:  $\Omega_0$  is  $L_p$ -sparse; all the eigenvalues of  $\Omega_0$  are bounded away from 0 and  $\infty$
- Condition 6: With probability  $1 O(p^{-c_2})$ ,  $\widehat{\Omega}$  is  $L'_p$ -sparse and  $\|\widehat{\Omega} \Omega_0\|_2 \le C_2 a_n$
- Condition 7:  $|\{j : |\beta_{0,j}| \gg [sn^{-1}(\log p)]^{1/2}\}| \ge cs$

#### Theorem (Fan, Demirkaya, Li and L., 2020)

Under Conditions 1–2 and 5–7 and some growth conditions on  $(a_n, K_n, L_p, L'_p)$ , if  $\log p = o(n^a)$ , then it holds that RANK with estimated precision matrix  $\widehat{\Omega}$  and reduced model  $\widetilde{S}$  has asymptotic power one.

# Model settings

- Focus on Gaussian design x ~ N(0, Σ<sub>0</sub>) for easy generation of knockoff variables
- Linear model:  $\mathbf{y} = \mathbf{X}\boldsymbol{\beta}_0 + \boldsymbol{\varepsilon}$
- Partially linear model:  $\mathbf{y} = \mathbf{X}\beta_0 + \mathbf{g}(\mathbf{U}) + \varepsilon$
- Single-index model:  $\mathbf{y} = \mathbf{g}(\mathbf{X}\beta_0) + \varepsilon$
- Additive model:  $\mathbf{y} = \sum_{j=1}^{p} \mathbf{g}_{j}(\mathbf{X}_{j}) + \epsilon$
- n = 400 in all settings

# *How to choose* diag{**S**} *in generating knockoff variables?*

Barber and Candès (2015) suggested

- equicorrelated construction  $s_j^{EQ} = 2\lambda_{\min}(\mathbf{\Sigma}) \wedge 1$  for all j
- semidefinite program (SDP) construction

minimize 
$$\sum_{j} |1 - s_{j}^{\text{SDP}}|$$
 subject to  $s_{j}^{\text{SDP}} \ge 0$ , diag $\{s^{\text{SDP}}\} \preceq 2\Sigma$ 

■ We (Candès, Fan, Janson and L., 2018) suggested scalable construction – approximate semidefinite program (ASDP) construction:

Step 1. Choose an approximation  $\Sigma_{approx}$  of  $\Sigma$  and solve:

$$\begin{array}{ll} \text{minimize} & \sum_{j} |1 - \hat{s}_{j}| \\ \text{subject to} & \hat{s}_{j} \geq 0, \quad \text{diag}\{\hat{s}\} \preceq 2\boldsymbol{\Sigma}_{\text{approx}}. \end{array}$$

Step 2. maximize  $\gamma$  subject to diag{ $\gamma \hat{s}$ }  $\leq 2\Sigma$ , and set  $s^{\text{ASDP}} = \gamma \hat{s}$ . Can be solved quickly by bisection search over  $\gamma \in [0, 1]$ .

Note: Each column of X is standardized to have norm 1

### Simulation Results – linear model

*Table 1:* Linear model with A = 1.5 and s = 30; "+" stands for knockoff<sub>+</sub> filter; "s" stands for with data splitting

|        |      | RANK   |       | RANK <sub>+</sub> |       | RANKs  |        | $RANKs_+$ |        |
|--------|------|--------|-------|-------------------|-------|--------|--------|-----------|--------|
| $\rho$ | р    | FDR    | Power | FDR               | Power | FDR    | Power  | FDR       | Power  |
| 0      | 200  | 0.2054 | 1.00  | 0.1749            | 1.00  | 0.1909 | 1.00   | 0.1730    | 1.00   |
|        | 400  | 0.2062 | 1.00  | 0.1824            | 1.00  | 0.2010 | 1.00   | 0.1801    | 1.00   |
|        | 600  | 0.2263 | 1.00  | 0.1940            | 1.00  | 0.2206 | 1.00   | 0.1935    | 1.00   |
|        | 800  | 0.2385 | 1.00  | 0.1911            | 1.00  | 0.2247 | 1.00   | 0.1874    | 1.00   |
|        | 1000 | 0.2413 | 1.00  | 0.2083            | 1.00  | 0.2235 | 1.00   | 0.1970    | 1.00   |
| 0.5    | 200  | 0.2087 | 1.00  | 0.1844            | 1.00  | 0.1875 | 1.00   | 0.1692    | 1.00   |
|        | 400  | 0.2144 | 1.00  | 0.1879            | 1.00  | 0.1954 | 1.00   | 0.1703    | 1.00   |
|        | 600  | 0.2292 | 1.00  | 0.1868            | 1.00  | 0.2062 | 1.00   | 0.1798    | 1.00   |
|        | 800  | 0.2398 | 1.00  | 0.1933            | 1.00  | 0.2052 | 0.9997 | 0.1805    | 0.9997 |
|        | 1000 | 0.2412 | 1.00  | 0.2019            | 1.00  | 0.2221 | 0.9984 | 0.2034    | 0.9984 |

## Continued

*Table 2:* Linear model with A = 3.5 and s = 30; "+" stands for knockoff<sub>+</sub> filter; "s" stands for with data splitting; "HKF" stands for Barber and Candès (2016) approach

|        |      | RANKs  |        | RANKs+ |        | HKF    |        | Hk     | HKF <sub>+</sub> |  |
|--------|------|--------|--------|--------|--------|--------|--------|--------|------------------|--|
| $\rho$ | р    | FDR    | Power  | FDR    | Power  | FDR    | Power  | FDR    | Power            |  |
| 0      | 200  | 0.1858 | 1.00   | 0.1785 | 1.00   | 0.1977 | 0.9849 | 0.1749 | 0.9837           |  |
|        | 400  | 0.1895 | 1.00   | 0.1815 | 1.00   | 0.2064 | 0.9046 | 0.1876 | 0.8477           |  |
|        | 600  | 0.2050 | 1.00   | 0.1702 | 1.00   | 0.1964 | 0.8424 | 0.1593 | 0.7668           |  |
|        | 800  | 0.2149 | 1.00   | 0.1921 | 1.00   | 0.1703 | 0.7513 | 0.1218 | 0.6241           |  |
|        | 1000 | 0.2180 | 1.00   | 0.1934 | 1.00   | 0.1422 | 0.7138 | 0.1010 | 0.5550           |  |
| 0.5    | 200  | 0.1986 | 1.00   | 0.1618 | 1.00   | 0.1992 | 0.9336 | 0.1801 | 0.9300           |  |
|        | 400  | 0.1971 | 1.00   | 0.1805 | 1.00   | 0.1657 | 0.8398 | 0.1363 | 0.7825           |  |
|        | 600  | 0.2021 | 1.00   | 0.1757 | 1.00   | 0.1253 | 0.7098 | 0.0910 | 0.6068           |  |
|        | 800  | 0.2018 | 1.00   | 0.1860 | 1.00   | 0.1374 | 0.6978 | 0.0917 | 0.5792           |  |
|        | 1000 | 0.2097 | 0.9993 | 0.1920 | 0.9993 | 0.1552 | 0.6486 | 0.1076 | 0.5524           |  |

# Simulation results – partially linear model

*Table 3:* Partially linear model with s = 30; "+" stands for knockoff<sub>+</sub> filter; "s" stands for with data splitting

|        |      | RANK   |       | $RANK_+$ |       | RA     | RANKs  |        | $RANKs_+$ |  |
|--------|------|--------|-------|----------|-------|--------|--------|--------|-----------|--|
| $\rho$ | р    | FDR    | Power | FDR      | Power | FDR    | Power  | FDR    | Power     |  |
| 0      | 200  | 0.2117 | 1.00  | 0.1923   | 1.00  | 0.1846 | 0.9976 | 0.1699 | 0.9970    |  |
|        | 400  | 0.2234 | 1.00  | 0.1977   | 1.00  | 0.1944 | 0.9970 | 0.1747 | 0.9966    |  |
|        | 600  | 0.2041 | 1.00  | 0.1776   | 1.00  | 0.2014 | 0.9968 | 0.1802 | 0.9960    |  |
|        | 800  | 0.2298 | 1.00  | 0.1810   | 1.00  | 0.2085 | 0.9933 | 0.1902 | 0.9930    |  |
|        | 1000 | 0.2322 | 1.00  | 0.1979   | 1.00  | 0.2113 | 0.9860 | 0.1851 | 0.9840    |  |
| 0.5    | 200  | 0.2180 | 1.00  | 0.1929   | 1.00  | 0.1825 | 0.9952 | 0.1660 | 0.9949    |  |
|        | 400  | 0.2254 | 1.00  | 0.1966   | 1.00  | 0.1809 | 0.9950 | 0.1628 | 0.9948    |  |
|        | 600  | 0.2062 | 1.00  | 0.1814   | 1.00  | 0.2038 | 0.9945 | 0.1898 | 0.9945    |  |
|        | 800  | 0.2264 | 1.00  | 0.1948   | 1.00  | 0.2019 | 0.9916 | 0.1703 | 0.9906    |  |
|        | 1000 | 0.2316 | 1.00  | 0.2033   | 1.00  | 0.2127 | 0.9830 | 0.1857 | 0.9790    |  |

## Simulation results – single-index model

*Table 4:* Single-index model with s = 10; "+" stands for knockoff<sub>+</sub> filter; "s" stands for with data splitting

|        |      | RANK   |       | $RANK_+$ |       | RANKs  |       | $RANKs_+$ |       |
|--------|------|--------|-------|----------|-------|--------|-------|-----------|-------|
| $\rho$ | р    | FDR    | Power | FDR      | Power | FDR    | Power | FDR       | Power |
| 0      | 200  | 0.1893 | 1     | 0.1413   | 1     | 0.1899 | 1     | 0.1383    | 1     |
|        | 400  | 0.2163 | 1     | 0.1598   | 1     | 0.245  | 0.998 | 0.1676    | 0.997 |
|        | 600  | 0.2166 | 1     | 0.1358   | 1     | 0.2314 | 0.999 | 0.1673    | 0.998 |
|        | 800  | 0.1964 | 1     | 0.1406   | 1     | 0.2443 | 0.992 | 0.1817    | 0.992 |
|        | 1000 | 0.2051 | 1     | 0.134    | 1     | 0.2431 | 0.969 | 0.1611    | 0.962 |
| 0.5    | 200  | 0.2189 | 1     | 0.1591   | 1     | 0.2322 | 1     | 0.1626    | 1     |
|        | 400  | 0.2005 | 1     | 0.1314   | 1     | 0.2099 | 0.996 | 0.1615    | 0.995 |
|        | 600  | 0.2064 | 1     | 0.1426   | 1     | 0.2331 | 0.998 | 0.1726    | 0.998 |
|        | 800  | 0.2049 | 1     | 0.1518   | 1     | 0.2288 | 0.994 | 0.1701    | 0.994 |
|        | 1000 | 0.2259 | 1     | 0.1423   | 1     | 0.2392 | 0.985 | 0.185     | 0.983 |

## Simulation results – additive model

*Table 5:* Additive model with s = 10; "+" stands for knockoff<sub>+</sub> filter; "s" stands for with data splitting

|        |      | RANK   |        | $RANK_+$ |        | RANKs  |        | $RANKs_+$ |        |
|--------|------|--------|--------|----------|--------|--------|--------|-----------|--------|
| $\rho$ | р    | FDR    | Power  | FDR      | Power  | FDR    | Power  | FDR       | Power  |
| 0      | 200  | 0.1926 | 0.9780 | 0.1719   | 0.9690 | 0.2207 | 0.9490 | 0.1668    | 0.9410 |
|        | 400  | 0.2094 | 0.9750 | 0.1773   | 0.9670 | 0.2236 | 0.9430 | 0.1639    | 0.9340 |
|        | 600  | 0.2155 | 0.9670 | 0.1729   | 0.9500 | 0.2051 | 0.9310 | 0.1620    | 0.9220 |
|        | 800  | 0.2273 | 0.9590 | 0.1825   | 0.9410 | 0.2341 | 0.9280 | 0.1905    | 0.9200 |
|        | 1000 | 0.2390 | 0.9570 | 0.1751   | 0.9350 | 0.2350 | 0.9140 | 0.1833    | 0.9070 |
| 0.5    | 200  | 0.1904 | 0.9680 | 0.1733   | 0.9590 | 0.2078 | 0.9370 | 0.1531    | 0.9330 |
|        | 400  | 0.2173 | 0.9650 | 0.1701   | 0.9540 | 0.2224 | 0.9360 | 0.1591    | 0.9280 |
|        | 600  | 0.2267 | 0.9600 | 0.1656   | 0.9360 | 0.2366 | 0.9340 | 0.1981    | 0.9270 |
|        | 800  | 0.2306 | 0.9540 | 0.1798   | 0.9320 | 0.2332 | 0.9150 | 0.1740    | 0.9110 |
|        | 1000 | 0.2378 | 0.9330 | 0.1793   | 0.9270 | 0.2422 | 0.8970 | 0.1813    | 0.8880 |

- RANK and RANK<sub>+</sub> mimic closely RANKs and RANKs<sub>+</sub>, suggesting that data splitting is more of a technical assumption
- FDR approximately controlled at target level of q = 0.2 with high power, which is in line with our theory
- Despite that both RANKs and HKF (for linear model) are based on data splitting, their practical performance is very different
- These results demonstrate model-free feature of our procedure for large-scale inference in nonlinear models

## **Conclusions**

- Model-X knockoffs is a powerful, flexible, and robust solution for FDR control in high-dimensional variable selection
- Can be regarded as a "wrapper" that may be combined with any variable selection methods
- Extensions
  - Investigate how to generate model-X knockoff variables in more general settings (*IPAD* Fan, L., Sharifvaghefi and Uematsu, 2020; ...)
  - Integrate the idea of knockoffs inference with deep learning (*DeepPINK* Lu, Fan, L. and Noble, 2018; ...)

## References

- Barber, R. F. and Candès, E. J. (2015). Controlling the false discovery rate via knockoffs. *The Annals of Statistics* 43, 2055–2085.
- Candès, E. J., Fan, Y., Janson, L. and Lv, J. (2018). Panning for gold: 'model-X' knockoffs for high dimensional controlled variable selection. *Journal of the Royal Statistical Society Series B* 80, 551–577.
- Fan, Y., Demirkaya, E., Li, G. and Lv, J. (2020). RANK: large-scale inference with graphical nonlinear knockoffs. *Journal* of the American Statistical Association 115, 362–379.
- Fan, Y., Demirkaya, E. and Lv, J. (2019). Nonuniformity of p-values can occur early in diverging dimensions. *Journal of Machine Learning Research* 20, 1–33.